Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Neurosci ; 26(6): 470-482, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35470763

RESUMO

BACKGROUND: Vitamin D is a vital neuroactive steroid for brain development and function. Vitamin D deficiency is a worldwide health problem, particularly in children and women. Gestational or developmental vitamin D deficiency is associated with an increased risk of neurodevelopmental and neuropsychiatric disorders. This study examined the effect of maternal vitamin D dietary manipulations and treadmill exercise on anxiety-and depressive-related behaviors, pro-inflammatory cytokines, and prefrontal cortex (PFC) protein levels of brain-derived neurotrophic factor (BDNF) and vitamin D receptor (VDR) in adult male offspring born to vitamin D-deficient diet (VDD)-fed dams. METHODS AND RESULTS: Female rats were provided standard diet (SD) or VDD for six weeks and then were treated with SD (started a week before mating throughout gestation and lactation) and treadmill exercise (a week before mating until gestational day 20). Male offspring were separated on postnatal day (PND) 21 and fed SD chow until PND90. Our results demonstrated that maternal vitamin D deficiency increased anxiety and depression-related behaviors, increased levels of TNF-α and IL-1ß in serum, and decreased prefrontal protein expressions of BDNF and VDR in adult male offspring. However, maternal vitamin D supplementation and treadmill exercise reversed these changes alone or in combination. CONCLUSION: It seems that developmental vitamin D deficiency disrupts brain development and has a long-lasting effect on VDR and BDNF signaling in the rat brain resulting in neuropsychiatric disorders in offspring. Therefore, vitamin D supplementation and physical exercise are reasonable strategies to prevent these neurobehavioral impairments.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Deficiência de Vitamina D , Ratos , Animais , Feminino , Masculino , Humanos , Vitamina D , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Vitaminas , Ansiedade , Suplementos Nutricionais , Efeitos Tardios da Exposição Pré-Natal/metabolismo
2.
PLoS One ; 17(8): e0273206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35998127

RESUMO

There is a disagreement on whether extremely low frequency electromagnetic fields (ELF-EMF) have a beneficial or harmful effect on anxiety-like behavior. Prenatal stress induces frequent disturbances in offspring physiology such as anxiety-like behavior extending to adulthood. This study was designed to evaluate the effects of prenatal stress and ELF-EMF exposure before and during pregnancy on anxiety-like behavior and some anxiety-related pathways in the hippocampus of female rat offspring. A total of 24 female rats 40 days of age were distributed into four groups of 6 rats each: control, Stress (rats whose mothers underwent chronic stress), EMF (rats whose mothers were exposed to electromagnetic fields) and EMF/S (rats whose mothers were simultaneously exposed to chronic stress and ELF-EMF). The rats were given elevated plus-maze and open field tests and then their brains were dissected and their hippocampus were subjected to analysis. ELISA was used to measure 24(S)-hydroxy cholesterol, corticosterone, and serotonin levels. Cryptochrome2, steroidogenic acute regulatory protein, 3B-Hydroxy steroid dehydrogenase, N-methyl-D-aspartate receptor 2(NMDAr2) and phosphorylated N-methyl-D-aspartate receptor 2(PNMDAr2) were assayed by immunoblotting. Anxiety-like behavior increased in all treatment groups at the same time EMF increased anxiety induced by maternal stress in the EMF/S group. The stress group showed decreased serotonin and increased corticosterone levels. ELF-EMF elevated the PNMDAr2/NMDAr2 ratio and 24(S)-hydroxy cholesterol compared to the control group but did not change corticosterone. EMF did not restore changes induced by stress in behavioral and molecular tests. The results of the current study, clarified that ELF-EMF can induce anxiety-like behavior which may be attributed to an increase in the PNMDAr2/NMDAr2 ratio and 24(S)-OHC in the hippocampus, and prenatal stress may contribute to anxiety via a decrease in serotonin and an increase in corticosterone in the hippocampus. We also found that anxiety-like behavior induced by maternal stress exposure, is exacerbated by electromagnetic fields radiation.


Assuntos
Corticosterona , Campos Eletromagnéticos , Animais , Ansiedade/etiologia , Campos Eletromagnéticos/efeitos adversos , Feminino , Ratos , Receptores de N-Metil-D-Aspartato , Serotonina , Estresse Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...